CALVAL of the SWOT SSH Spectrum: Moored GPS Buoy Approach

Bruce Haines and Shailen Desai

Jet Propulsion Laboratory, California Inst. of Tech., Pasadena USA

Christian Meinig and Scott Stalin

NOAA Pacific Environmental Marine Laboratory, Seattle USA

June 29, 2017 SWOT 2nd Science Team Meeting Toulouse FRANCE

GPS Buoy Project

 Joint NASA JPL, NOAA PMEL and U. Washington project funded through NASA ROSES call (Physical Oceanography)*

OBJECTIVES:

- Design, build and test a modular, low-power, robust, high-accuracy GNSS measurement system for long-term, continuous and autonomous operations on ocean- and cryosphere-observing platforms.
- Probe the limits of new kinematic precise-point positioning (PPP) techniques for accurately determining sea-surface height, and recovering neutral and charged atmosphere characteristics.
- Explore potential scientific benefits—in the fields of physical oceanography, weather and space weather—of accurate GNSS observations from a global ocean network of floating platforms.

Prototype buoy successfully completed open-ocean testing at Jason crossover location near Daisy Bank off Oregon coast (120 days from May 11–Sept. 8, 2016).

^{*}Extending the Reach of the Global GNSS Network to the World's Oceans: A Prototype Buoy for Monitoring Sea Surface Height, Troposphere and Space Weather, B. Haines, S. Brown, S. Desai, A. Komjathy, R. Kwok, D. Stowers, C. Meinig and J. Morison.

Prototype Precision GPS Buoy

FEATURES

- Integrated low-power (~1 W), dual-frequency GPS system: Septentrio AsteRX-m credit-card sized receiver + PolarNt-x MF Antenna.
- Miniaturized digital compass/accelerometer.
- Iridium communications (presently used for basic heartbeat information).
- Adaptable to multiple floating platforms (e.g., buoys, wave gliders).
- Delivers geodetic accuracies without nearby reference stations.

DEVELOPMENT AND TESTING

- Buoy tested successfully under progressively more challenging conditions in US Pacific Northwest:
- ✓ Lake Washington (Aug. 7–12, 2015).
- ✓ Puget Sound (Nov. 10 to Dec. 14, 2015).
- ✓ Daisy Bank off Oregon Coast: open ocean Jason crossover location (May 11 to Sep. 8, 2016).

Daisy Bank GPS Buoy

CLOSEUP OF BUOY LOCATION

Deployment spanned 24 dual Jason-2/3 overflights

SWH (GPS vs. Traditional NDBC Buoy)

Significant Wave Height Comparisons

GPS Buoy vs. Altimeter at Daisy Bank: SWH

2016.70

GPS Buoy vs. Radiometer at Daisy Bank: Wet Troposphere

- Buoy zenith wet troposphere estimated (as random walk) simultaneously with buoy position and clock.
- Excellent agreement between buoy and radiometer delay
 - Bias at mm level
 - Scatter of 7–8 mm

GPS Buoy vs. Altimeter at Daisy Bank: Sea Surface Height

Daisy Bank Buoy SSH Spectra: ABSOLUTE HEIGHT

Periodogram of Buoy Sea Surface Height Residuals After Estimating Tides/IB

- After estimating residual tides and IB, RMS variability of hourly buoy SSH is 2.3 cm.
- Measurements are absolute (geocentric).
- Measurements
 reflects GPS errors
 as well true SSH
 variations (both steric
 and barotropic).

Daisy Bank Buoy SSH Spectra: WAVE-INDUCED ERRORS

- Forward differences of hourly SSH are at the 1.5 cm (RMS) level (~1 cm per leg).
- Reflect errors related to both wave sampling and GPS.
- Consistent with the difference of hourly averages from different tapering functions:
 - Boxcar vs. Gaussian: 7 mm
 - Boxcar vs. Cosine: 6 mm

Periodogram of Buoy SSH Forward-Difference Residuals After Estimating Tides/IB

Summary

- Preliminary results from Daisy Bank GPS buoy very promising
 - Returned high-quality, uninterrupted data for entire open-ocean test (~120 d).
 - Supported accurate retrievals of SSH, SWH, wet path delay and ionosphere.
 - Competitive with Harvest for all altimeter calibration metrics.
- Sensitivity of buoy-derived SSH (hourly) to wave effects is at the RMS level of 1 cm or better.
 - Need short baseline buoy measurements (analogous to SWOT buoy array) to better segregate wave- and GPS-related errors, and to evaluate full potential for SWOT CALVAL.
- Latest deployment underway: Monterey Bay/SWOT (June July 2017).
 - BPR, moorings and subsurface gliders will enable further discrimination of wave-induced errors from GPS measurement errors.